Rysunki utworzono za pomocą programu C.a.R. Można przesuwać suwaki i 'wypełnione' punkty.
Kwadrat w trójkącie zazwyczaj spotykamy w położeniu takim, jak na poniższym rysunku. Jego jeden bok jest zawarty w jednym boku trójkąta, a pozostałe dwa wierzchołki leżą na pozostałych dwóch bokach trójkąta.
Można łatwo wyznaczyć długość x boku takiego kwadratu leżącego w trójkącie równobocznym o boku a.
Wskazówka 1. Wystarczy zapisać podobieństwo trójkątów ABC i LMC.
Wskazówka 2. Niech h oznacza wysokość trójkąta ABC opuszczoną z C.
Jaka jest wysokość trójkąta LMC opuszczona z C?
Odpowiedź.
x = ah / (a+h) = ...
= a(2 - 3) .
Trudniejszym zadaniem jest wyznaczenie tak położonego kwadratu. Podaj konstrukcję kwadratu leżącego w trójkącie w opisany wyżej sposób.
Odpowiedź.
Przedstawimy nietypową konstrukcję.
Uczniowie mogą jednak zadać
Kłopotliwe pytanie 1. Czy kwadrat leżący w ten sposób w trójkącie równobocznym jest największym z kwadratów w nim zawartych?
Odpowiedź?
Poniższe rozumowanie pokazuje, że jeśli prostokąt KLMN leży w (dowolnym) trójkącie ABC tak, że żaden z boków nie zawiera się w obwodzie trójkąta, to ten prostokąt nie jest największym z możliwych.
Można prostokąt KLMN nieco obrócić wokół punktu S
(będącego przecięciem prostopadłych do boków w punktach K i L). Po takim małym obrocie w odpowiednią stronę (w którą? od czego to zależy?) wszystkie wierzchołki leżą we wnętrzu trójkąta.
Zatem ten obrócony prostokąt K'L'M'N' można jeszcze nieco powiększyć w obrębie trójkąta.
Powyższe rozumowanie dawałoby kompletne uzasadnienie pozytywnej odpowiedzi na kłopotliwe pytanie 1, gdybyśmy wiedzieli, że
wśród kwadratów zawartych w danym trójkącie
istnieje kwadrat o największym boku.
Pojęcie zwartości poznawane na studiach matematycznych daje krótką argumentację. Ale jak to opowiedzieć w szkole?
Trudna sprawa, kłopotliwe pytanie.
(Nie roztrząsam tutaj tego problemu. Gdy uczeń tak zapyta, odpowiem mu... na przerwie.)
Kłopotliwe pytanie 2. Czy w każdym trójkącie największy kwadrat w nim zawarty ma wszystkie wierzchołki leżące na obwodzie trójkąta?
Wskazówka
Nie.
Odpowiedź
Patrz.
Kłopotliwe pytanie 3. Czy kwadrat leżący w opisany wyżej sposób w trójkącie równobocznym ma największe pole spośród wszystkich prostokątów zawartych w tym trójkącie?
Z takim zadaniem mierzyli się Młodzicy w eliminacjach do Maratonu Matematycznego 2024: Po padoku spacerują jeźdźcy i konie. Jest tam 25 głów i 60 nóg. Jaka jest różnica między liczbą ludzi i koni?
Do 19 IX można zwiedzać w IM UWr wystawę prac finalistów konkursu matematycznego origami "Żuraw". 20 IX prace zostaną zlicytowane na rzecz Fundacji Matematyków Wrocławskich. Zapraszamy!
Czy podczas wakacyjnych wędrówek odkryliście jakąś atrakcję turystyczną związaną z matematyką? Pomnik, tablicę pamiątkową, kawiarnię, w której sformułowano słynne twierdzenie, ławeczkę z wyciętym wzorem, miejsce urodzenia, dom rodzinny lub grób jakiegoś znanego matematyka? Napiszcie, prześlijcie zdjęcie oraz lokalizację na adres mikolaj@math.uni.wroc.pl. Opublikujemy Wasz tekst na Portalu, aby i inni mogli to miejsce odwiedzić!
Dowcip miesiąca
Nauczyciel: Jasiu, czy ojciec pomaga ci w odrabianiu lekcji? Jasio: Nie, ta ostatnia dwója z matematyki zupełnie go załamała.
*****
Ojciec: Jasiu, kto jest najbardziej leniwy w twojej klasie?
Jasio: A co to jest leniwy?
Ojciec: To znaczy, że ktoś nic nie robi, tylko się przygląda, jak inni pracują.
Jasio: A, to nasz pan od matematyki.
Nauczyciele są dla społeczeństw trampoliną do lepszego jutra. Kiedy są pełni pasji i energii, dostrzegą talenty w uczniach, będą ich wspierać i ciągnąć w górę, a wtedy może narodzić się siła, która pchnie świat do przodu. Jeśli natomiast ich zapał zostanie stłumiony brakiem wsparcia i szacunku, kiedy ich pasja wypali się przez nieprzystające do stresu i odpowiedzialności zarobki, przyszłość namaluje się w ciemnych barwach. Nauczyciele, trzymajcie się!